Deoxyribozymes that synthesize branched and lariat RNA.
نویسندگان
چکیده
Branched RNA molecules with a 2',5'-phosphodiester linkage are important biochemical intermediates. Lariat RNA is a particular type of branched RNA that is formed during intron splicing in vivo. Synthesis of branched and lariat RNA is challenging, and there are few general approaches that are applicable in vitro. Here we report the identification of divalent metal-dependent deoxyribozymes (DNA enzymes) that synthesize branched and lariat RNA. In vitro selection was used to obtain deoxyribozymes that selectively join an internal RNA 2'-hydroxyl with a 5'-terminal triphosphate in a convenient "binding arms" format. At least 85% yield of 2',5'-branched RNA is obtained at 37 degrees C and 20 mM Mn2+, pH 7.5 in </=30 min, and for some DNA enzymes in as little as 2 min (kobs approximately 0.1-2 min-1). This represents a rate enhancement of up to 5 million-fold over the background reaction. Lariat RNA is also synthesized by the new deoxyribozymes, which have significant potential as generalizable reagents for the practical preparation of branched and lariat RNA. Because nucleic acid enzymes apparently create branched RNA in nature (e.g., group II introns and the spliceosome), the new deoxyribozymes are of substantial mechanistic interest as well as practical importance.
منابع مشابه
A general two-step strategy to synthesize lariat RNAs.
We describe a general and efficient two-step strategy for lariat RNA synthesis. In the first step, a deoxyribozyme synthesizes 2',5'-branched RNA. In the second step, T4 RNA ligase closes the loop that completes the lariat. The loop-closure reaction can form either a natural or unnatural lariat isomer, depending on which of the two 3'-termini of the branched RNA reacts with the lone 5'-end. We ...
متن کاملImproved deoxyribozymes for synthesis of covalently branched DNA and RNA
A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to i...
متن کاملUse of deoxyribozymes in RNA research.
Since their first identification by in vitro selection in 1994, deoxyribozymes have been developed to catalyze a variety of chemical reactions. The first DNA-catalyzed reaction was cleavage of a ribonucleotide linkage within an oligonucleotide substrate. In subsequent years, growing collections of deoxyribozymes have been developed for several reactions that have practical utility for RNA resea...
متن کاملFunctional Hallmarks of a Catalytic DNA that Makes Lariat RNA.
Catalytic DNAs, also known as deoxyribozymes, are of practical value for the synthesis of structurally or topologically complex RNAs, but little is known about the molecular details of DNA catalysis. We have investigated a deoxyribozyme that catalyzes the formation of a specific intramolecular 2',5'-phosphodiester bond to produce lariat RNA, which is an important biological intermediate in euka...
متن کاملCharacterization of deoxyribozymes that synthesize branched RNA.
We recently reported deoxyribozymes (DNA enzymes) that synthesize 2',5'-branched RNA. The in vitro-selected 9F7 and 9F21 deoxyribozymes mediate reaction of a branch-site adenosine 2'-hydroxyl on one RNA substrate with the 5'-triphosphate of another RNA substrate. Here we characterize these DNA enzymes with respect to their branch-forming activity. Both 9F7 and 9F21 are much more active with Mn(...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 23 شماره
صفحات -
تاریخ انتشار 2003